Quantum light-sources


Current projects

References – Bio-Photons

[BALM+20] Gabriel E. Bertolesi, Karen Atkinson-Leadbeater, Emma M. Mackey, Yi N. Song, Belinda Heyne, and Sarah McFarlane. The regulation of skin pigmentation in response to environ- mental light by pineal type ii opsins and skin melanophore melatonin receptors. Journal of Photochemistry and Photobiology B: Biology, 212:112024, 2020.

[BHM14] G.E. Bertolesi, C.L. Hehr, and S. McFarlane. Wiring the retinal circuits activated by light during early development. Neural Development, 9:3, 2014.

[BM18] G.E. Bertolesi and S. McFarlane. Seeing the light to change colour: An evolutionary per- spective on the role of melanopsin in neuroendocrine circuits regulating light-mediated skin pigmentation. Pigment Cell Melanoma Res., 31(3):354–373, 2018.

[BSTA10] I. Bokkon, V. Salari, J.A. Tuszynski, and I. Antal. Estimation of the number of biophotons involved in the visual perception of a single-object image: Biophoton intensity can be con- siderably higher inside cells than outside. Journal of Photochemistry and Photobiology B: Biology, 100:160–166, 06 2010.

[CP14] Michal Cifra and Pavel Posp ́ısˇil. Ultra-weak photon emission from biological samples: Def- inition, mechanisms, properties, detection and applications. Journal of Photochemistry and Photobiology B: Biology, 139:2 – 10, 2014.

[DGB+ 20] Damon DePaoli, Alicja Gasecka, Mohamed Bahdine, Jean M. Deschenes, Laurent Goetz, Jimena Perez-Sanchez, Robert P. Bonin, Yves De Koninck, Martin Parent, and Daniel C. Coˆte ́. Anisotropic light scattering from myelinated axons in the spinal cord. Neurophotonics, 7(1):1 – 11, 2020.

[DSP12] B.T. Dotta, K.S. Saroka, and M.A. Persinger. Increased photon emission from the head while imagining light in the dark is correlated with changes in electroencephalographic power: Support for bo ́kkon’s biophoton hypothesis. Neuroscience Letters, 513(2):151 – 154, 2012.

[DUI97] Balasigamani Devaraj, Masashi Usa, and Humio Inaba. Biophotons: ultraweak light emission from living systems. Current Opinion in Solid State and Materials Science, 2(2):188 – 193, 1997.

[Fis15] M. Fisher. Quantum cognition: The possibility of processing with nuclear spins in the brain. Annals of Physics, 61:593–602, 2015.

[GA28] A. Gurwitsch and A. Anikin. Das cornealepithel als detektor und sender mitogenetischer strahlung. Wilhelm Roux Arch Entwickl Mech Org., 113:731–739, 1928.

[GKK04] F Grass, H Klima, and S Kasper. Biophotons, microtubules and cns, is our brain a “holo- graphic computer”? Medical Hypotheses, 62(2):169 – 172, 2004.

[Gur23] Alexander Gurwitsch. Die natur des spezifischen erregers der zellteilung. Archiv fu ̈r mikroskopische Anatomie und Entwicklungsmechanik, 100:11–40, 1923.

[HC07] Toshikazu Hakamata and Editorial Committee. Photomultiplier Tubes, Basics and Applica- tions (3rd Ed.). Hamamatsu Photonics K.K., Shizuoka, Japan, 2007.

[HI19] Itamar Holzman and Yachin Ivry. Superconducting nanowires for single-photon detection: Progress, challenges, and opportunities. Advanced Quantum Technologies, 2(3-4):1800058, 2019.

[HMB+ 94] Konnie Hebeda, Thomas Menovsky, Johan Beek, John Wolbers, and Martin van Gemert. Light propagation in the brain depends on nerve fiber orientation. Neurosurgery, 35(4):720– 724, 1994.

[HW04] H. Hu and M. Wu. Spin-mediated consciousness theory: possible roles of neural membrane nuclear spin ensembles and paramagnetic oxygen. Med Hypotheses., 63(4):633–646, 2004.

[JJC13] Fritz-Albert Popp, Jiin-Ju Chang, Joachim Fisch. Biophotons. Springer Science, illustrated edition, 2013.

[KBT+ 16] Sourabh Kumar, Kristine Boone, Jack Tuszyn ́ski, Paul Barclay, and Christoph Simon. Pos- sible existence of optical communication channels in the brain. Scientific reports., 6(1):1, 2016.

[KLK+ 06] Jungdae Kim, Jaekwan Lim, Hongbae Kim, Saeyoung Ahn, Sung-Bo Sim, and Kwang-Sup Soh. Scanning spontaneous photon emission from transplanted ovarian tumor of mice using a photomultiplier tube. Electromagnetic Biology and Medicine, 25(2):97–102, 2006. PMID: 16771298.

[KTS+ 99] Masaki Kobayashi, Motohiro Takeda, Tomoo Sato, Yoshihiko Yamazaki, Kenya Kaneko, Ken- Ichi Ito, Hiroshi Kato, and Humio Inaba. In vivo imaging of spontaneous ultraweak photon emission from a rat’s brain correlated with cerebral energy metabolism and oxidative stress. Neuroscience Research, 34(2):103 – 113, 1999.

[KZA+ 20] Boris Korzh, Qing-Yuan Zhao, Jason P. Allmaras, Simone Frasca, Travis M. Autry, Eric A. Bersin, Andrew D. Beyer, Ryan M. Briggs, Bruce Bumble, Marco Colangelo, Garrison M. Crouch, Andrew E. Dane, Thomas Gerrits, Adriana E. Lita, Francesco Marsili, Galan Moody, Cristia ́n Pen ̃a, Edward Ramirez, Jake D. Rezac, Neil Sinclair, Martin J. Stevens, Angel E. Velasco, Varun B. Verma, Emma E. Wollman, Si Xie, Di Zhu, Paul D. Hale, Maria Spiropulu, Kevin L. Silverman, Richard P. Mirin, Sae Woo Nam, Alexander G. Kozorezov, Matthew D. Shaw, and Karl K. Berggren. Demonstration of sub-3 ps temporal resolution with a supercon- ducting nanowire single-photon detector. Nature Photonics, 14:250–255, 2020.

[MPH+ 15] A. J. R. MacDonald, G. G. Popowich, B. D. Hauer, P. H. Kim, A. Fredrick, X. Rojas, P. Doolin, and J. P. Davis. Optical microscope and tapered fiber coupling apparatus for a dilution refrig- erator. Review of Scientific Instruments, 86(1):013107, 2015.

[MVS+ 13] F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam. Detecting single infrared photons with 93% system efficiency. Nature Photonics, 7:210–214, 2013.

[PP11] Ankush Prasad and Pavel Pospisˇil. Two-dimensional imaging of spontaneous ultra-weak pho- ton emission from the human skin: role of reactive oxygen species. Journal of Biophotonics, 4(11-12):840–849, 2011.

[PPR14] Pavel Posp ́ısˇil, Ankush Prasad, and Marek Ra ́c. Role of reactive oxygen species in ultra- weak photon emission in biological systems. Journal of Photochemistry and Photobiology B: Biology, 139:11 – 23, 2014.

[RTB+ 11] Majid Rahnama, Jack A. Tuszynski, Istvan Bokkon, Michal Cifra, Peyman Sardar, and Vahid Salari. Emission of mitochondrial biophotons and their effect on electrical activity of mem- brane via microtubules. Journal of Integrative Neuroscience, 10(01):65–88, 2011. PMID: 21425483.

[Sim19] C. Simon. Can quantum physics help solve the hard problem of consciousness? Journal of Consciousness Studies, 26(5-6):204–218, 2019.

[SSTT15] Hiroyuki Shibata, Kaoru Shimizu, Hiroki Takesue, and Yasuhiro Tokura. Ultimate low system dark-count rate for superconducting nanowire single-photon detector. Opt. Lett., 40(14):3428–3431, 2015.

[SVB+ 15] V. Salari, H. Valian, H. Bassereh, I. Bo ́kkon, and A. Barkhordari. Ultraweak photon emission in the brain. Journal of Integrative Neuroscience, 14(03):419–429, 2015. PMID: 26336891.

[SVD+15] Konstantin Smirnov, Yury Vachtomin, Alexander Divochiy, Andrey Antipov, and Gregory Goltsman. Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers. Applied Physics Express, 8(2):022501, 2015.

[SWD10] Yan Sun, Chao Wang, and Jiapei Dai. Biophotons as neural communication signals demon- strated by in situ biophoton autography. Photochemical & photobiological sciences., 9(3):315, 2010.

[TD14] Rendong Tang and Jiapei Dai. Spatiotemporal imaging of glutamate-induced biophotonic activities and transmission in neural circuits. PLOS ONE, 9(1):1–8, 01 2014.

[TKT+ 04] Motohiro Takeda, Masaki Kobayashi, Mariko Takayama, Satoshi Suzuki, Takanori Ishida, Kohji Ohnuki, Takuya Moriya, and Noriaki Ohuchi. Biophoton detection as a novel technique for cancer imaging. Cancer Science, 95(8):656–661, 2004.

[VB15] Ilya Volodyaev and Lev V Beloussov. Revisiting the mitogenetic effect of ultra-weak photon emission. Frontiers in physiology., 6:241, 2015.

[WVL+ 19] Emma E. Wollman, Varun B. Verma, Adriana E. Lita, William H. Farr, Matthew D. Shaw, Richard P. Mirin, and Sae Woo Nam. Kilopixel array of superconducting nanowire single- photon detectors. Opt. Express, 27(24):35279–35289, 2019.

[You20] Lixing You. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics, 9(9):2673–2692, 2020.

[ZDU+20] Kevin X. Zhang, Shane D’Souza, Brian A. Upton, Stace Kernodle, Shruti Vemaraju, Gowri Nayak, Kevin D. Gaitonde, Amanda L. Holt, Courtney D. Linne, April N. Smith, Nathan T. Petts, Matthew Batie, Rajib Mukherjee, Durgesh Tiwari, Ethan D. Buhr, Russell N. Van Gelder, Christina Gross, Alison Sweeney, Joan Sanchez-Gurmaches, Randy J. Seeley, and Richard A. Lang. Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons. Nature, 585:420–425, 2020.

[ZKT+ 18] Parisa Zarkeshian, Sourabh Kumar, Jack Tuszynski, Paul Barclay, and Christoph Simon. Are there optical communication channels in the brain? Front Biosci (Landmark Ed), 23:1407– 1421, 2018.

[ZTZ73] AI Zhuravlev, OP Tsvylev, and SM. Zubkova. Spontaneous endogenous ultraweak lumines- cence of rat liver mitochondria in conditions of normal metabolism. Biofizika, 18(6):1037–40, 1973.

[ZZY+ 19] C. Zhang, W. Zhang, L. You, J. Huang, H. Li, X. Sun, H. Wang, C. Lv, H. Zhou, X. Liu, Z. Wang, and X. Xie. Suppressing dark counts of multimode-fiber-coupled superconducting nanowire single-photon detector. IEEE Photonics Journal, 11(5):1–8, 2019.